Toxicity and efficacy of aqueous crude extracts from Allium sativum, Callistemon citrinus and Moringa stenopetala against L. major
DOI:
https://doi.org/10.58216/kjri.v3i1.7Keywords:
M. stenopetala, C. citrinus, A. sativum, efficacy, toxicity, aqueous extracts, Leishmania major, vero cellsAbstract
Cutaneous leishmaniasis (CL) treatment involves pentavalent antimonials, amphotericin B, pentamidine, miltefosine among others. These drugs are toxic, costly, and require prolonged use. CL is a protozoan skin infection which may lead to disfiguring and stigmatization. In Kenya, CL is common in Baringo County where it is caused by Leishmania major and transmitted by infected female phlebotomine sand fly. Leishmaniases are common in poverty stricken areas where victims opt for local herbal therapies. Herbs used haven’t been tested scientifically to verify their toxicity and efficacy. The current study determines in vitro toxicity and in vivo efficacy of aqueous crude extracts of Moringa stenopetala, Callistemon citrinus, and Allium sativum against L. major. The IC50 of aqueous extracts against promastigotes ranged from 297µg/ml to 575µg/ml compared to Pentostam and liposomal amphotericin B with IC50 of 0.26µg/ml and 0.82µg/ml respectively. The viability of promastigotes upon exposure to extracts ranged from 52.55% to 60.57%. Similarly the IC50 of extracts against vero cells ranged between  467µg/ml to 2105µg/ml compared to 108µg/ml and 60µg/ml for pentostam and liposomal amphotericin B respectively. Orally administered A. sativum reduced L. major caused footpad lesions significantly (P < 0.05) when compared to control PBS. The efficacy of oral C. citrinus extracts (B) in reducing amastigotes in spleens of infected BALB/c mice was 82.99%, followed by oral M. stenopetala (A) at 66.96% and oral A. sativum (C) at 60.37% compared to pentostam and liposomal amphotericin B at 66.40% and 60.62% respectively. The difference between the mean total LDUs for aqueous oral C. citrinus extracts and control oral PBS was significant (P = 0.017). It was concluded that crude aqueous extracts of A. sativum, M. stenopetala, and C. citrinus show antileishmanial activity at low toxicity. Inclusion of garlic and moringa in the diets of people in leishmaniases foci should be emphasized.
Downloads
References
Abdelhady, M. I. & Aly, H. A. H. (2012). Antioxidant and antimicrobial activities of Callistemon comboynensis essential oils. Free Radicals and Antioxidants; 2 (1): 37 – 41.
Ali, N., Shah, S. W. A. & Ahmad, B. (2010). Calcium channel blocking of fruits of Callistemon citrinus. Journal of the chemical Society of Pakistan; 33 (2): 245 – 248.
Alvar J.,Valez ID., Bern C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., den Boer, M., WHO leishmaniasis control team. (2012). Leishmaniasis worldwide and global estimates of its incidences. PLoS ONE; 7 (5): e 35671. Doi: 10.1371/journal.pone. 0035671.
Anez, N., Carrasco, H. & Parada H. (1999). Acute Chaga’s disease in western Venezuela: A clinical seroparesitologic and epidemiological study. American Journal of tropical medicine & hygiene; 60: 215 – 222.
Augusti, K. T. (1996). Therapeutic Values of onion (Allium cepa L.) and garlic (Allium sativum L). Indian Journal of Experimental Biology; 34: 634 - 640.
Bellostas, N., Sorensen, J. C., Nikiema, A., Sorensen, H., Pasternak, D. & Kumar, S. (2010). Glucosinolates in leaves of Moringa species grown and disseminated in Niger. African Journal of Agricultural Research; 5 (11): 1338 – 1340.
Bradley, D.J. & Kirkley, J. (1977). Regulation of Leishmania population within the host. The variable course of Leishmania donovani infections in mice. Clinical Experimental Immunology; 30: 119 – 129.
Chulay, J. D. & Bryceson, A. D. M. (1983). Quantification of amastigotes in smears of splenic aspirates from patients with visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene; 32: 3475 – 3479.
Delahaye, C., Rainford, L., Nicholson, A., Mitchell, S., Lindo, J. & Ahmad, M. (2009). Antibacterial and antifungal analysis of crude extracts from leaves of Callistemon viminalis. Journal of Medical and Biological Sciences; 3(1): ISSN 1934 – 7189.
Dongmo, B. N., Dongmo, P. M. J., Ngoune, L. T., Kwazou, N. L., Zollo, P. H. A. & Menut, C. (2010). Antifungal activities of essential oils of some Camerounian Myrtaceae on Aspergillus flavus Link ex. Fries. Asian Journal of Experimental Biological Sciences; 1 (4): 907 – 914.
Ejaz, S., Chekarova, I., Cho, J. W., Lee, S. Y., Ashraf, S. & Lim, C. W. (2009). Effect of aged garlic extract on wound healing: a new frontier in wound management. Drug and chemical toxicology; 32(3); 191 – 203. Doi: 10. 1080/01480540902862236.
Fahey, J. W. (2005). Moringa oleifera: A review of the medicinal evidence for its nutritional, therapeutic and prophylactic properties: Part I. Trees for life Journal; 1: 5.
Firoz, N., Bharatesh, K., Nilesh, P., Vijay, G., Tabassum, S. & Nilofar, N. (2011). Cardioprotective activity of ethanolic extract of Callistemon lanceolatus leaves on doxorubicin cardiomyopathy in rats. Bangladesh Journal of Pharmacology; 6 (1): 38 – 45.
Gathirwa, J. W., Rukunga, G. M., Njagi, E.N.M., Omar, S. A., Guantai, A. N., Tolo, F. M., Kimani, C. W., Muthaura, C. N., Kirira, P. G., Ndunda, T. N., Amalemba, G., Mungai, G. M. & Ndiege, I. O. (2008). The in vitro anti-plasmodial and in vivo anti-malarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru Community in Kenya. Journal of Ethno-pharmacology; 115: 223 – 231.
Gharavi, M. J., Nobakhr, M., Khademvatan, S. H., Bandani, E., Bakhshayesh, M. 7 Roozbehani, M. (2011). The effect of garlic extract on expression of IFN-γ and INos genes in macrophages infected with Leishmania major. Iranian Journal of Parasitology; 6 (3): 74 – 81.
Gicheru, M. M., Olobo, J. O., Anjili, C. O., Orago, A. S., Modabber, F. and Scott, P. (2001). Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin -12 develop a type I immune response but are not protected against challenge infection. Infection and Immunity; 69(1): 245-251.
Hendricks, L. D. & Wright, N. (1979). Diagnosis of Cutaneous Leishmaniasis by In Vitro Cultivation of Saline Aspirates In Schneider’s Drosophila Medium. American Journal of Tropical Medicine & Hygiene; 28: 962 - 964.
Islam, M. S., Kusumoto, Y. & Abdulla Al-Mamun, M. (2011). Cytotoxicity and cancer (HeLa) killing effeicacy of aqueous garlic (Allium sativum) extract. Journal of Scientific Research; 3(2): 375-382.
Joy, P. P., Thomas, J., Mathew, S. & Skaria, B. P. (2001). Medicinal Plants. Tropical Horticulture Volume 2. (eds. Bose, T. K., Kabir, J., Das, P. & Joy, P. P.). Naya Prokash, Calcutta, 449 – 632.
Kigondu, E. V. M., Rukunga, G. M., Keriko, J. M., Tonui, W. K., Gachirwa, J. W., Kirira, P. G., Irungu, B., Ingonga, J. M. & Ndiege, I. O. (2009). Anti-Parasitic Activity And Cytotoxicity Of Selected Medicinal Plants From Kenya. Journal of Ethnopharmacology; 123(3): 504 – 509.
Kimber, C. D., Evans, D. A., Robinson, B. L. & Peters, W. (1981). Control of yeast contamination with 5-fluorocytosine in the in vitro cultivation of Leishmania spp. American Journal of Tropical Medicine & Parasitology; 75: 453 – 454.
Kinuthia, G.K., Anjili, C.O., Gikonyo, N.K., Kigondu, E.M., Ingonga, J.M. & Kabiru, E.W. (2013). In vitro and in vivo activities of blends of crude aqueous extracts from Allium sativum L, Callistemon citrinus (Curtis) Skeels and Moringa stenopetala (Baker F) Cufodontis against Leishmania major. International Journal of Medicinal and Aromatic Plants; 3(2): 234 – 246.
Koul, O., Walia, S. & Dhaliwal, G. S. (2008). Essential oils as green pesticides: Potential and constraints. Biopesticides International; 4(1): 63 – 84.
Martinez, S. & Marr, J. J. (1992). Allopurinol In The Treatment Of American Cutaneous Leishmaniasis. The New England Journal of Medicine; 326: 741 – 744.
McClure, C. D., Linda, L. N. & Zatyrka, S. A. (1996). Antileishmanial properties of Allium sativum extracts and derivatives. ISHS Acta Horticulture 426 : International symposium on medicinal and aromatic plants.
Mekonnen, Y., Yardley, V., Rock, P & Croft, S. (1999). In vitro anti-trypanosomal activity of Moringa stenopetala leaves and roots. Phytotherapy Resources; 13: 538 – 539.
Mekonnen, Y. & Drager, B. (2003). Glucosinolates in Moringa stenopetala. Planta Medica; 69: 380 – 382.
Mekonnen, N., Houghton, P. & Timbrell, S. (2005). The toxicity of extracts of plant parts of Moringa stenopetala in HEPG2 cells in vitro. Phytotherapy Resources; 19(10): 870 – 875.
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods; 16: 55 – 63.
Nolan, T. J. & Farrel, J. P. (1987). Experimental Infections of the Multimammate rat (Mastomys natalensis) with L. Donovani and L. Major. American Journal of Tropical Medicine & Hygiene; 36(2): 264 – 269.
Oyedeji, O. O., Lawal, O. A. Shode, F. O. & Oyedeji, A. O. (2009). Chemical composition and Antibacterial activity of the essential oils of Callistemon citrinus and Callistemon viminalis from South Africa. Molecules; 14(6): 1990 – 1998.
Santos, D. O., Coutinho, C. E. R., Bottino, C. G., Viera, R. T., Nascimento, S. B., Bourguignon, S. C., Castro, H. C., Madeira, M. F., Bernardino, A., Corte-Real, S., Pinho, R.T. & Rodrigues, C. R. (2008). Leishmaniasis treatment – a challenge that remains: a review. Parasitology Research; 103: 1 – 10.
Tahany, M. A. A., Hegazy, A. K., Sayed, A. M., Kabiel, H. F., El-Alfy, T & El- Komy, S. M. (2010). Study on combined antimicrobial activity of some biologically active constituents from wild Moringa peregrine Forssk. Journal of Yeast and Fungal Research; 1(1): 15 – 24.
Wabwoba, B., Anjili, C. O., Ngeiywa, M. M., Ngure, P. K., Kigondu, E. M., Ingonga, J. & Makwali, J. (2010). Experimental Chemotherapy with Allium Sativum (Liliaceae) Methanolic Extract in Rodents infected with Leishmania major and Leishmania donovani. Journal of Vector Borne Diseases; 47: 160 – 167.
Yousefi, R., Ghaffarifar, F. & Asl, A. D. (2009). The effect of Alkanna tincturia and Peganum harmala extracts on Leishmania major (MRHO/IR/75/ER) in vitro. Iranian Journal of Parasitology; 4(1): 40 – 47.