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ABSTRACT 

Machine learning (ML) is pivotal in strengthening IoT cybersecurity through adaptive and scalable 

threat detection. However, the reliability and deployment readiness of ML models depend on the 

robustness of their validation methods. This systematic literature review (SLR) analyzes 54 peer-

reviewed studies (2018–2024) from IEEE Xplore, SpringerLink, ScienceDirect, and ACM Digital 

Library, focusing on applications such as intrusion detection, malware classification, threat 

prediction, and adversarial defence. Findings reveal a predominant use of basic validation methods 

such as (k-fold and hold-out), which inadequately address IoT-specific issues like class imbalance, 

concept drift, adversarial resilience, and device heterogeneity. Advanced approaches, such as 

temporal, cross-dataset, and hybrid validation, remain underutilized.To bridge these gaps, the 

study proposes a Domain-Aligned Validation Framework encompassing of  time-aware validation, 

robustness-focused evaluation, and deployment-oriented testing. It also introduces a taxonomy of 

current practices and provides recommendations to improve consistency, generalizability, and trust 

in ML-based IoT security systems. These insights are valuable to researchers, developers, and 

policymakers aiming to deploy more resilient and situation-aware IoT security solutions. 

Keywords: Machine Learning, Cybersecurity, Validation Practices, Dataset, Intrusion Detection, 

Internet of Things 

INTRODUCTION 

The rapid growth of IoT technologies has transformed sectors such as healthcare, transportation, 

and smart infrastructure, enabling autonomous device communication with minimal human input. 

However, this expansion has also increased exposure to cyber threats due to IoT’s resource 

constraints, heterogeneity, and scale (Liu & Jiang, 2023; Wu et al., 2023). In response, machine 

learning (ML) has been widely adopted to develop intelligent intrusion detection systems (IDS) 

for identifying attacks in real-time (Ahmad & Alsmadi, 2021; Khan et al., 2024).  

A variety of ML-based IDS models, ranging from decision trees to deep neural networks, have 

been trained on benchmarks like CICIDS2017, BoT-IoT, and UNSW-NB15 (Gupta & Singh, 

2022; Rahman et al., 2022). Although many report high performance under controlled conditions, 

their validation strategies often lack attention to critical IoT-specific factors such as temporal 

dynamics, class imbalance, and adversarial behavior ( Liu et al., 2023). 
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 Despite significant progress in model development, validation methods are frequently treated as 

routine steps rather than crucial determinants of model reliability (Gupta & Singh, 2022). 

Consequently, aspects like real-time adaptability, cross-device generalization, and robustness 

under evolving threats remain underexplored. 

To address these shortcomings, this study presents a systematic review of validation strategies in 

ML-based IoT IDS research, guided by the following research questions: 

RQ1: What categories of validation techniques are currently employed in ML-based IoT 

cybersecurity research? 

RQ2: How effectively do these validation address IoT-specific challenges? 

RQ3: What are the methodological limitations of current validation practices, and what 

opportunities exist for future research in enhancing robustness and deployment-readiness? 

This study contributes by: (1) categorizing and analyzing prevalent validation strategies in ML-

based IoT IDS research; (2) assessing their alignment with real-world IoT constraints; and (3) 

identifying gaps and opportunities for developing more robust, transferable, and deployment-ready 

validation frameworks. By emphasizing evaluation quality alongside model design, it advances 

the reliability and impact of ML-based IoT cybersecurity solutions. 

 

RELATED WORK 

Machine Learning Techniques for IoT Cybersecurity 

Machine learning (ML) has become central to securing IoT environments due to rising cyber 

threats and the complex, dynamic nature of IoT networks. Techniques such as decision trees, 

support vector machines, deep learning, and ensemble models have shown strong performance in 

intrusion and anomaly detection, especially when trained on benchmark datasets like CICIDS2017, 

UNSW-NB15, BoT-IoT, and TON_IoT (Gupta & Singh, 2022; Khan et al., 2022). However, while 

algorithm development has advanced, validation practices remain underexplored. Most studies 

rely on standard k-fold cross-validation or train-test splits, often overlooking IoT-specific 

challenges like temporal drift, class imbalance, device heterogeneity, and adversarial behaviors 

(Liu, et al., 2023; Meidan et al., 2018). 

For instance, (Gupta & Singh, 2022)combined Random Forest and SVM, but validated only using 

10-fold cross-validation. Similarly, Khan et al. (2022)used a CNN with a hold-out strategy, with 

limited consideration of evolving attack vectors. (Liu et al., 2023)addressed concept drift using an 

adaptive LSTM model, but broader validation, such as adversarial testing or cross-dataset 

evaluation, remains rare. Rahman et al. (2022)highlighted explainability but also relied on single-

dataset validation.Existing reviews often focus on algorithmic trends and datasets (Alharbi et al., 

2020)with minimal attention to the robustness of validation frameworks. This gap underscores the 

need for a focused synthesis of validation strategies in ML-based IoT cybersecurity, an area this 

study seeks to address. 

 

https://journals.kabarak.ac.ke/index.php/kjri/$$$call$$$/grid/issues/future-issue-grid/edit-issue?issueId=46
https://journals.kabarak.ac.ke/index.php/kjri/
file:///C:/Mac/Home/Documents/Usiu/kabarak%20journal/SLR_Revised_%20Journal.docx


 

DOI: 10.58216/kjri.v15i02.595             Kabarak J. Res. Innov. Vol. 15 No. 3 (2025)                         Page 18 

Kabarak Journal of Research & Innovation 

https://journals.kabarak.ac.ke/index.php/kjri/ 

Maluki et .al.  

 Validation Practices in ML-Based IoT Security Research 

Robust validation is essential for building reliable ML models in IoT cybersecurity. Yet, most stud-

ies emphasize high accuracy on familiar datasets, with limited focus on generalization and practi-

cal deployment. This section classifies validation approaches into two key categories: founda-

tional/comparative methods and context-aware, real-world techniques. 

Foundational and Comparative Validation Approaches 

Many ML-based cybersecurity studies rely on standard validation methods like holdout testing, 

stratified sampling, and k-fold cross-validation (Hendrycks & Dietterich, 2019; Kohav, 

1995).While these reduce overfitting and aid evaluation, they assume IID data, an unrealistic 

premise for the dynamic and heterogeneous IoT landscape.Common benchmarks such as NSL-

KDD, CICIDS2017, and UNSW-NB15 offer standardization but face criticism for outdated threats 

and limited diversity (Zhang, 2022). More robust methods, like cross-dataset and cross-domain 

validation, are rarely adopted due to the scarcity of diverse IoT datasets.Yet, studies (Hendrycks 

& Dietterich, 2019; Zhou et al., 2020) underscore the value of these techniques in revealing model 

weaknesses and improving generalization. 

Real-World-Oriented and Context-Aware Validation Methods 

To ensure effective deployment in real-world settings, validation must extend beyond static bench-

marks. Time-aware validation is particularly vital for intrusion detection, as it maintains the se-

quence of events and reflects real-time dynamics such as concept drift and delayed labeling 

(Landauer et al., 2025).Transparency and reproducibility also remain critical. Many studies over-

look reporting essential configurations and preprocessing details, limiting replicability (Haibe-

Kains et al., 2020). Adopting open-source standards and comprehensive documentation enhances 

trust in ML-based security systems.  

Validation should further simulate real-world stressors, like adversarial attacks, packet loss, or 

limited resources, to assess operational robustness. Incorporating Service Recovery Processes 

(SRPs) can provide insight into system resilience post-attack (Janjua & Aslam, 2021). In sum, 

advancing IoT threat detection demands rigorous, time-aware, cross-domain, and recovery-inclu-

sive validation to improve model reliability, generalizability, and deployment readiness. 

 

METHODOLOGY 

This study employed a Systematic Literature Review (SLR) to investigate validation strategies 

used in ML-based intrusion detection systems (IDS) for IoT. The review followed the PRISMA 

framework to ensure methodological rigor, transparency, and replicability across all review stages. 

The review was guided by the following research questions: 

RQ 1: What categories of validation techniques are currently employed in ML-based IoT cy-

bersecurity research? 

RQ 2: How effectively do these validation approaches address IoT-specific challenges such 

as data imbalance, device heterogeneity, temporal drift, and adversarial conditions? 
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 RQ 3: What are the methodological limitations of current validation practices, and what op-

portunities exist for future research in enhancing robustness and deployment-readi-

ness? 

 

Search strategy  

A structured search strategy was implemented across key databases, IEEE Xplore, ACM Digital 

Library, SpringerLink, and ScienceDirect, supplemented by Scopus and Google Scholar to capture 

gray literature. Search terms combined core concepts of machine learning, IoT, cybersecurity, and 

model validation, using Boolean operators to construct comprehensive queries. 

(“Machine Learning” OR “Deep Learning”) AND (“IoT” OR “Internet of Things”) AND 

(“Cybersecurity” OR “Intrusion Detection”) AND (“Validation” OR “Evaluation” OR 

“Robustness Testing”).  

The search was restricted to peer-reviewed articles published in English from 2018 through 2024. 

Inclusion  

Studies were included if they appeared in peer-reviewed journals or reputable conferences, applied 

ML or deep learning to IoT cybersecurity, and explicitly described at least one validation method.  

Exclusion  

Exclusion criteria ruled out non-IoT-focused works, papers without empirical evaluation, non-

English publications, preprints, duplicates, and papers under four pages. The review also excluded 

theoretical papers, reviews, and studies lacking clear validation techniques. 

From 1,153 initial records, 126 full-text articles were assessed. After applying the criteria, 54 

studies were included in the final synthesis. 

Data extraction  

Data were extracted from each study on ML models, datasets, validation methods, performance 

metrics, and evaluation limitations. To ensure reliability, extraction was systematic and cross-

checked by a second reviewer. Thematic synthesis was used to identify trends, strengths, and gaps 

in validation practices.Results are organized to highlight patterns in validation approaches, their 

alignment with IoT-specific challenges, and their implications for improving model robustness 

and generalizability. A PRISMA flow diagram (Figure 1) and summary tables support the 

comparative analysis. 
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Figure 1: Prisma diagram 

The Proposed Conceptual Framework 

This study introduces a Domain-Aligned Validation Framework (Figure 2) to systematically assess 

validation practices in ML-based IoT cybersecurity research. Guided by three research questions—

namely, current techniques, their suitability for IoT challenges, and existing methodological 

gaps—the framework is structured around three dimensions. The first dimension, temporal 

alignment, emphasizes time-aware methods such as temporal slicing and forward-chaining to 

account for evolving IoT traffic and concept drift. The second dimension, robustness assessment, 

focuses on evaluating model performance under adverse conditions through approaches like 

stratified sampling, SMOTE, adversarial retraining, and noisy input testing. The third dimension, 

deployment readiness, highlights the importance of generalizability by incorporating cross-dataset 

validation, device-specific testing, and real-time simulation. 

This framework helps map current practices, reveal gaps, and propose context-aware strategies.It 

also underpins the validation taxonomy discussed later, bridging theory and practice in IoT 

cybersecurity. 
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Figure 2: The proposed conceptual framework  

 

Ethical Considerations 

As no human participants were involved, consent and participation issues were not applicable. 

Ethical integrity was ensured through responsible data use, transparency, and avoidance of 

conflicts of interest. 

RESULTS 

Synthesis of Evaluation Practices in Reviewed Studies 

This section analyzes 54 peer-reviewed studies (2018–2024) on validation methods in ML-based 

IoT cybersecurity systems. It covers publication trends, source distribution, and dominant 

validation techniques. Beyond descriptive statistics, a qualitative synthesis highlights common 

practices, ongoing gaps, and unresolved challenges. The findings emphasize the need for more 

rigorous, context-aware validation frameworks to improve the accuracy and real-world 

applicability of intrusion detection systems in diverse IoT environments. 

Characteristics of the Selected Studies 

Table 1 presents the distribution of the 54 reviewed studies based on their database source, 

reflecting the concentration of relevant literature across key digital repositories in the field of IoT 

cybersecurity. 

IEEE Xplore was the most prominent, contributing 35.2% (19 studies), reflecting its key role in 

publishing IoT and ML-based cybersecurity research. SpringerLink and ScienceDirect each 

accounted for 25.9% (14 studies), while the ACM Digital Library contributed the least (13.0%, 7 
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 studies), indicating a narrower focus on the topic. This distribution highlights the dominance of 

technology-focused databases in this field. 

 Table 1: Distribution of Reviewed Studies by Database Source 

Database Source Number of Studies Number of Studies% 

IEEE Xplore 19 35.2% 

ACM Digital Library 7 13.0% 

SpringerLink 14 25.9% 

ScienceDirect 14 25.9% 

Total 54  100% 

 

i) Distribution by Year  

Figure 3 shows the annual publication trends of the reviewed studies, providing insights into the 

temporal progression and increasing research focus on ML-based IoT cybersecurity solutions. The 

yearly distribution of the 54 reviewed studies, indicating a steady rise in research publications 

between 2020 to 2022. This trend reflects increasing academic focus on IoT security and the 

demand for advanced machine learning-based threat detection methods. 

 

Figure 3: Distribution of studies based on year. 

ii) Distribution based on the Study Location  

To contextualize the global research landscape, the 54 selected studies were categorized based on 

the geographical affiliation of their primary authors, revealing a concentration of research efforts 

in Asia (21), followed by Europe (13), with more limited representation from other regions like 

South America, among others. As illustrated in Figure 4. 
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Figure 4: Geographical Affiliation 

 

iii) Distribution based on Study Domain  

To better understand the thematic focus, the 54 studies were categorized by their primary 

cybersecurity application. As shown in Table 2, intrusion detection dominated the research 

landscape, while areas like malware analysis, adversarial robustness, and IoT-specific threat 

modeling appeared less frequently. 

  Table 2: Distribution of Selected Studies by Cybersecurity Domain 

Cybersecurity Domain Number of Studies Percentage (%) 

Intrusion Detection 29 53.7% 

Malware Classification 9 16.7% 

Adversarial Robustness 6 11.1% 

Anomaly Detection 4 7.4% 

Threat Prediction 3 5.6% 

IoT-Specific Risk Modeling 2 3.7% 

Privacy and Data Integrity 1 1.8% 

 

iv) Common Machine Learning Tasks in IoT Cybersecurity 

The synthesis of the 54 studies underscores the varied roles of machine learning in strengthening 

IoT cybersecurity. ML is commonly used to improve threat detection, automate responses, and 

support decision-making in complex, data-rich environments. 
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 Table 3: Distribution of ML Tasks in IoT Cybersecurity Research 

ML Task Description Frequency in Reviewed Studies 

Intrusion 

Detection 

Detecting unauthorized or abnormal 

activity in IoT networks. 

High 

Malware 

Classification 

Identifying and classifying 

malicious software targeting IoT 

devices. 

Moderate 

Phishing 

Detection 

Recognizing deceptive attempts to 

extract sensitive information via 

emails or web interfaces. 

Low 

General ML Role Enabling data-driven threat 

detection, pattern recognition, and 

predictive analytics. 

Discussed across all studies 

Table 3 shows that intrusion detection is the most extensively studied area, reflecting its key role 

in IoT threat identification. Malware classification receives moderate attention, while phishing 

detection remains underexplored, suggesting a research gap. Overall, ML is widely applied for 

threat prediction and adaptive defence, reinforcing its importance in IoT cybersecurity. 

Results and Synthesis: Based on Research Questions  

RQ1. What categories of validation techniques are currently employed in ML-based IoT 

cybersecurity research? 

Definition and Importance of Validation 

Validation is essential for ensuring ML models generalize to unseen data, critical in the dynamic, 

resource-limited IoT context. Inadequate validation can result in overstated performance and 

limited real-world effectiveness (Javed et al., 2024; Kumar et al., 2021). Though techniques like 

k-fold cross-validation and train-test splits are common, their suitability for IoT remains limited 

(Adedeji et al., 2023; Xie, 2023). Selecting appropriate validation methods is therefore key to 

building reliable IoT cybersecurity models (Admass et al., 2024; Pahl, 2022). 

Classification of Validation Techniques 

The review identified six primary validation techniques used to evaluate ML-based intrusion 

detection systems for IoT: k-fold cross-validation, hold-out validation, stratified cross-validation, 

cross-dataset validation, temporal validation, and hybrid methods. These approaches differ in 

methodological rigor and their alignment with real-world IoT challenges. Table 4 summarizes the 

validation techniques employed across the reviewed studies. 

Table 4: Validation Techniques in Reviewed IoT IDS Studies (n = 54) 
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 Validation 

Technique 

Description Prevalence Representative 

Sources 

Common 

Limitations 

K-Fold 

Cross-

Validation 

Dataset split into k 

subsets; each subset is 

used for validation 

once while the others 

form the training set. 

60% (Gupta & Singh, 

2022;Meidan et 

al., 2018) 

Often used on static 

datasets; lacks 

temporal or 

deployment setting. 

Hold-Out 

Validation 

Splits data into fixed 

training and testing 

sets (e.g., 70:30). 

25% Khan et al., 2022; 

Ahmad et al., 

2021) 

Sensitive to split 

bias; rarely repeated 

or statistically 

analyzed. 

Stratified 

Cross-

Validation 

Ensures class 

distributions are 

preserved across 

training and testing 

folds. 

11% Ahmad et al. 

(2021)  

Used infrequently; 

rarely analyzed for 

impact on minority 

class performance. 

Cross-

Dataset 

Validation 

Model trained on one 

dataset and tested on 

another to assess 

generalizability. 

9% (Meidan et al., 

2018;Abeshu & 

Chilamkurti, 

2018) 

Highlights domain 

shifts; underused 

despite real-world 

relevance. 

Temporal 

Validation 

Training and testing 

data separated by time; 

simulates deployment 

under time-evolving 

conditions. 

<10% (Liu et al., 2023)  Largely absent; 

ignores concept 

drift and time-aware 

performance. 

Hybrid 

Validation 

Methods 

Combines multiple 

validation techniques 

(e.g., cross-validation 

with external testing or 

temporal splits). 

7% (Rahman et al., 

2022) 

Complex to 

implement; lacks 

standardization 

across studies. 

 

Table 4 indicates that k-fold cross-validation was the most used technique, applied in about 60% 

of studies (Gupta & Singh, 2022; Khan et al., 2024). While effective in reducing overfitting, it is 

typically used on static datasets and rarely accounts for temporal drift (Liuet al., 2023). Hold-out 

validation appeared in roughly 25% of studies (Khan et al., 2024), offering simplicity but limited 

statistical reliability. Stratified cross-validation, helpful for class imbalance, was infrequently used 

and seldom analyzed for its effect on minority class detection (Berger et al., 2022). Cross-dataset 
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 validation, key for assessing generalizability, was used in less than 10% of cases (Meidan et al., 

2018), and temporal validation, critical for deployment realism, was largely overlooked (Liu et al., 

2023). 

A few studies employed hybrid approaches combining cross-validation with temporal or external 

testing (Alrehaili & Alshamrani, 2023), though these lacked consistency and standardization. 

Overall, despite its importance, validation in IoT-focused ML research remains dominated by 

conventional techniques that fall short of addressing the dynamic and heterogeneous nature of real-

world IoT environments. Table 5 compares these findings with prior work, emphasizing persistent 

gaps in IoT-specific validation practices. 

Table 5: Validation Techniques across this Study and Prior Research 

 

Validation 

Technique 

Findings from This Study Findings in Prior Work 

K-Fold Cross-

Validation 

Most common (60%), but limited to 

static data; lacks IoT realism 

Popular in general ML and IDS 

studies (Doshi & Kute, 2020; Shone 

et al., 2018) 

Hold-Out 

Validation 

Used in 25%, simple but statistically 

weak and prone to bias 

Common in early IDS evaluations; 

noted for simplicity (Xu & 

Goodacre, 2018) 

Stratified 

Cross-

Validation 

Rarely applied; impact on minority 

class performance underreported 

Briefly mentioned; not emphasized 

in older reviews 

Cross-Dataset 

Validation 

Under 10%; useful for generalization 

but underutilized 

Acknowledged as useful but not 

IoT-specific (Al Amin et al., 2021) 

Temporal 

Validation 

Largely absent; critical for capturing 

concept drift and real-time 

performance 

Rarely addressed; not prioritized in 

older IDS benchmarks 

Hybrid 

Validation 

Few studies used it; lacks 

standardization, but promising for 

deployment-aware evaluation 

Occasionally explored (Alshamrani, 

& Alqahtani, 2023) but not 

extensively evaluated 

RQ2: Exploring the effectiveness of validation techniques to address IoT-specific challenges. 

Effective validation is critical to ensure ML models generalize to unseen data, especially in the 

dynamic, resource-constrained IoT environment. Inadequate validation can result in overstated 

performance and poor deployment reliability (Attota et al., 2021; Javed et al., 2025).  Although 

methods like k-fold cross-validation and train-test splits are common, their suitability for IoT 

remains limited (Alshahrani et al., 2021; Zhang et al., 2023). Therefore, selecting context-

appropriate validation strategies is essential for building robust and reliable IoT cybersecurity 

models (Bichri et al., 2024; Pahl et al., 2022). 

IoT-Specific Validation Approaches and Challenges in ML-Based IDS  
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Table 6 summarizes how current validation techniques in ML-based IoT IDS address key chal-

lenges such as data imbalance, heterogeneity, temporal drift, adversarial resilience, and statistical 

rigor. It highlights each issue's nature, mitigation strategies, evaluation outcomes, limitations, and 

examples from the 54 reviewed studies, offering insight into how well existing practices meet real-

world IoT cybersecurity needs. 

 

Table 6: Summary of IoT-Specific Validation Approaches and Challenges in ML-Based IDS 

Studies 

Challen

ge 

Description Handling in 

Reviewed 

Studies 

Common 

Validation 

Techniques 

Used 

Evaluation 

Results 

Common 

Limitations 

Representativ

e Studies 

Data 

Imbala

nce 

Skewed 

distribution 

of attack vs. 

normal 

traffic in IoT 

datasets. 

Addressed 

in 35 

studies 

(65%) 

SMOTE, 

ADASYN,

under-

sampling, 

class 

weighting 

Improved 

minority 

class 

detection: 

10–25% 

increase in 

recall/F1-

score 

reported 

Minority 

classes are 

still poorly 

detected; 

overfitting 

risk with 

oversampli

ng 

(Ahmad & 

Alsmadi, 

2021;Rahman 

et al., 2022; 

Sharma & 

Singh, 2024)  

Device/

Protoco

l 

Diversi

ty 

Variations 

in device 

types, OSs, 

and 

communicat

ion 

protocols. 

Addressed 

in 14 

studies 

(26%) 

Cross-

device 

validation, 

federated 

learning, 

and 

heterogene

ous 

datasets 

Generalizati

on improved 

up to 15% 

when 

diversity 

was 

included 

Most 

models are 

trained on 

uniform 

datasets, 

and lack of 

real-world 

protocol 

representati

on 

(Meidan et al., 

2018;Alshamr

ani et al., 

2023; 

Raza et al., 

2021; Zhang 

et al., 2023). 

Tempor

al 

Variabi

lity 

Time-based 

changes in 

network 

behavior or 

attack 

patterns 

Addressed 

in 9 studies 

(17%) 

Chronologi

cal train-

test split, 

drift-aware 

models, 

time-

Some 

models 

degraded 

over time; 

10–30% 

accuracy 

drop 

observed in 

Rarely 

validated 

over time; 

static 

training 

sets 

dominate 

(Liu et al. 

2023; Gupta 

& Singh 2022; 

Kim & Jung, 

2023). 
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 (concept 

drift). 

window 

analysis 

evolving 

traffic 

Advers

arial 

Resilie

nce 

Resistance 

to evasion or 

poisoning 

by 

adversarial 

attacks. 

Evaluated 

in 6 studies 

(11%) 

Adversarial 

sample 

generation, 

FGSM, 

PGD, 

model 

hardening 

Models 

exhibited up 

to 40% 

accuracy 

drop under 

attack 

scenarios 

Adversarial 

validation 

rarely 

conducted; 

vulnerabilit

y remains 

high 

(Javed et al., 

2024;Liu & 

Shi, 2022; 

Sahu et al., 

2020) 

Statisti

cal 

Rigor 

Use of 

repeated 

runs, 

significance 

tests, or 

confidence 

intervals. 

Addressed 

in <15% of 

studies 

5x2 CV, 

repeated 

10-fold 

CV, 

confidence 

intervals, p-

values 

Sparse 

reporting: 

most results 

lack 

statistical 

significance 

testing 

Low 

reproducibi

lity: single-

run metrics 

dominate 

(Khan et al. 

2022;Rahman 

et al. 

2022;Patel et 

al., 2020). 

Data imbalance was the most addressed challenge (65% of studies), with SMOTE, ADASYN, or 

class weighting improving minority class detection by 5–15% in recall and F1-score. However, 

only 12 studies validated across multiple datasets or attacks, limiting generalizability. 

Device/protocol heterogeneity was considered in just 17% of studies. Cross-device validation 

revealed 10–20% accuracy drops, exposing generalization gaps and superficial handling of 

deployment variability.  

Temporal drift was explored in only 9% of studies. Time-aware validation revealed a 7–12% drop 

in F1-score over time, indicating limited model resilience to evolving threats. Adversarial 

resilience was rarely tested (<6%), with robustness checks revealing 15–30% performance drops 

under attack, exposing high vulnerability. Statistical precision was weak overall; only 18% 

reported confidence intervals or significance tests, limiting the credibility and reproducibility of 

most findings. 

RQ3: Methodological limitations of current validation practices, and the opportunities that exist 

for future research in enhancing robustness and deployment-readiness. 

Current validation strategies for ML-based IoT security often rely on conventional methods like 

k-fold or hold-out (Gupta & Singh, 2022), which neglect key IoT-specific challenges such as traf-

fic variability, device heterogeneity, and temporal drift. This limits real-world applicability (Liu 

et al., 2023). Most studies lack cross-dataset or temporal validation (Diro & Chilamkurti, 2018), 

and few address concept drift. Statistical consistency is weak, with limited use of confidence in-

tervals or significance tests (Khan et al., 2022). Adversarial resilience is rarely tested, despite rising 

threats. Future work should adopt IoT-aware validation frameworks incorporating diverse datasets, 

temporal and adversarial testing, and stronger statistical reporting as summarized in Table 7. 

https://journals.kabarak.ac.ke/index.php/kjri/$$$call$$$/grid/issues/future-issue-grid/edit-issue?issueId=46
https://journals.kabarak.ac.ke/index.php/kjri/


 

DOI: 10.58216/kjri.v15i02.595             Kabarak J. Res. Innov. Vol. 15 No. 3 (2025)                         Page 29 

Kabarak Journal of Research & Innovation 

https://journals.kabarak.ac.ke/index.php/kjri/ 

Maluki et .al.  

 Table 7: Emerging Research Directions for Validating ML-Based IoT Security Models 

Research 

Opportunity 

Description Rationale Representative 

Studies 

Time-Aware 

Evaluation 

Techniques 

Design validation 

strategies that account 

for temporal shifts and 

concept drift in IoT data 

streams. 

Most current studies rely 

on static datasets, ignoring 

the sequential and 

evolving nature of cyber 

threats. 

(Liu et al., 2023)  

Multi-Framework 

Validation 

Assess model 

performance across 

diverse IoT 

environments and 

application domains. 

Single-framework 

validation limits 

generalizability and 

deployment scalability of 

security models. 

(Doshi & Kute, 

2020a)  

Adversarial-

Resilience 

Assessment 

Integrate testing against 

crafted adversarial 

attacks into the 

validation process. 

Conventional evaluations 

do not reflect real-world 

adversarial conditions, 

posing risks for field 

deployment. 

(Alshamrani & 

Alqahtani, 2023)  

Explainability-

Centric 

Evaluation 

Employ validation 

metrics that incorporate 

model interpretability 

and user trust. 

Enhances transparency 

and aligns technical 

performance with 

practical usability in 

critical IoT settings. 

 

(Rahman et al., 

2022) 

Standardized 

Benchmarking 

Protocols 

Develop unified 

validation guidelines 

and publicly available 

benchmarking datasets. 

Lack of consistency in 

evaluation protocols 

hampers comparability 

across research efforts. 

(Shone et al., 

2018) 

Hybrid and 

Adaptive 

Validation 

Frameworks 

Combine traditional and 

emerging validation 

strategies to better 

simulate real-world 

conditions. 

Mixed approaches offer 

more comprehensive 

insights but are rarely 

applied consistently in 

current literature. 

(Al Amin et al., 

2021;Liu et al., 

2023) 

DISCUSSION 

RQ1: What Categories of Validation Techniques Are Currently Employed in ML-Based IoT 

Cybersecurity Research? 
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 The review shows k-fold cross-validation is the most used method in ML-based IoT cybersecurity 

for its simplicity and overfitting control, though its reliance on static datasets limits real-time use. 

Hold-out validation, applied in ~25% of studies, offers speed but lacks generalizability. More 

suitable techniques like stratified k-fold, cross-dataset, and temporal validation, essential for 

addressing class imbalance, concept drift, and device heterogeneity, were rarely used (<10%). 

Hybrid strategies showed promise but lacked consistency due to the absence of benchmarks. Tools 

like Scikit-learn and datasets such as CICIDS2017 and NSL-KDD are commonly used, though 

often lack diversity. Overall, the dominance of traditional methods reveals the need for 

standardized, context-aware validation frameworks for real-world reliability. 

RQ2: How effectively do current validation approaches address IoT-specific challenges such as 

data imbalance, device heterogeneity, temporal drift, and adversarial conditions? 

Despite ongoing efforts, key challenges persist in validating ML-based intrusion detection systems 

(IDS) for IoT. Data imbalance was addressed in about 67% of studies using techniques like 

SMOTE, class weighting, and ADASYN, which improved minority class detection by 5–15% 

(Kumar et al., 2022). However, concerns remain over overfitting and inflated performance, 

especially with non-independent datasets (Zhang et al., 2022). 

Device and protocol heterogeneity received limited attention, with only 17% of studies using 

cross-device or federated evaluations. These showed 10–20% performance drops in unseen 

environments, pointing to poor generalizability (Ahmed et al., 2022; Patel et al., 2020).Temporal 

drift was considered in just 9% of works, where time-aware validations revealed F1-score declines 

of 7–12%, suggesting models degrade over time (Alve et al., 2025). Similarly, only 11% of studies 

tested adversarial resilience, revealing vulnerabilities to evasion attacks (Singh & Yadav, 2024). 

Overall, current validation remains fragmented, often relying on overly simplified conditions, 

which limits the reliability and deployment readiness of ML-based IDS in dynamic IoT settings. 

RQ 3: What are the methodological limitations of current validation practices, and what 

opportunities exist for future research in enhancing robustness and deployment-readiness? 

Despite advancements, several methodological gaps persist in the reviewed literature. Static train-

test splits and k-fold cross-validation dominate 78% of studies (Hameed, 2022), fail to capture the 

dynamic and distributed nature of IoT environments. Future research should explore context-aware 

validation strategies, such as continual learning, federated testing, and incremental updates, to 

better reflect real-world settings. Another concern is the limited use of diverse, standardized 

datasets. Many studies depend on outdated or single-source data, which hinders model 

generalizability across varied IoT contexts (Whaiduzzaman et al., 2022). Advancing this area 

requires the adoption and creation of multi-domain datasets with temporal and adversarial 

annotations.Statistical consistencywas lacking;only 22% of studies apply statistical tests like 

confidence intervals or t-tests to support performance claims (Sarker et al., 2022), reducing the 

reliability of findings.  

Integrating such analyses would improve reproducibility and credibility. Moreover, adversarial 

resilience is rarely addressed. Few models are tested against crafted perturbations or simulated 

attacks. Research should prioritize adversarial training, certification, and evasion simulations to 

better reflect real-world threat landscapes (Xie & Huang, 2023). Finally, most studies emphasize 
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 standard metrics such as accuracy or F1-score, overlooking deployment-relevant factors like 

latency, energy use, and privacy (Krzysztoń et al., 2024). A shift toward holistic validation 

frameworks that include operational metrics is essential for practical implementation. 

IMPLICATIONS FOR RESEARCH AND PRACTICE 

The review identifies key gaps in current validation practices that limit the reliability of ML models 

in IoT cybersecurity. Researchers should adopt realistic validation strategies, such as temporal 

splits, adversarial testing, and cross-device evaluations, to better mimic operational settings. Using 

diverse and representative datasets, rather than static or outdated ones, will further improve model 

generalizability.For practitioners, robust validation frameworks are vital to ensure resilience 

against evolving threats. Integrating drift-aware retraining, federated evaluations, and adversarial 

robustness checks into the ML lifecycle can enhance long-term effectiveness. Addressing these 

gaps is essential for developing adaptable, trustworthy intrusion detection systems fit for dynamic 

IoT environments. 

CONCLUSION 

This study critically reviewed validation techniques in ML-based IoT cybersecurity, revealing 

overreliance on k-fold and hold-out methods, which often fail to reflect the dynamic and imbal-

anced nature of IoT environments. More robust techniques, such as temporal validation and cross-

dataset testing, remain underused despite their relevance for real-world deployment. 

The findings highlight the need for standardized, context-aware validation frameworks that ad-

dress class imbalance and promote reproducibility. Future research should focus on developing 

benchmark pipelines, encouraging best practices, and validating models in real-time, distributed 

IoT settings. These steps are essential for advancing trustworthy and scalable ML-driven security 

solutions. 

RECOMMENDATIONS 

Researchers should adopt context-aware validation approaches, such as temporal and cross-device 

methods, while also incorporating robustness metrics to ensure reliability. Addressing class imbal-

ance using techniques like SMOTE and combining traditional with advanced methods can help 

achieve a more balanced evaluation. Practitioners, on the other hand, should implement hybrid 

validation strategies during deployment and continuously monitor performance to detect drift or 

emerging threats. Meanwhile, standardization bodies and the broader research community have a 

responsibility to establish IoT-specific validation protocols and encourage the development of 

benchmark datasets that enhance reproducibility and comparability across studies. 

FUTURE WORK 

Effective IoT model validation should include metrics like energy use, latency, and scalability. 

Long-term real-world testing ensures resilience to evolving threats. Cross-domain evaluation sup-

ports generalizability, while privacy-aware methods (e.g., federated learning) uphold data stand-

ards. Adaptive tools that respond to threats and model updates enhance ongoing reliability.  
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