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ABSTRACT 

 
People living in America today are living longer compared to yester years; this is due to 

reduced mortality rates and increase in life expectancy. Over the years mortality rates have continuously 

been declining. However, other courses of death like suicide rate have been soaring high for the last 25 

years which is a worrying trend for both the state and the insurance providers. According to study report 

conducted between 2011 and 2012, life expectancy improved by 0.1 years from 78.7 to 78.8 years. This was 

attributed to improvement of services in the health sector in the country. This constant change in mortality 

rates is proving to be a challenge to the insurance industry and pension providers in designing the right 

products for their consumers. In this paper Negative Binomial Regression model is used to forecast male 

mortality of the United States of America (1980-220). The results of this analysis demonstrate that Negative 

Binomial with simple polynomial functions give better mortality forecast over the given period. 
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I. INTRODUCTION 

Longevity risk management has proved to be a challenge to many life insurance companies and pension 

service providers over the years. Improvement in the medical filed and good personal hygiene has led to 

an increase in life expectancy. A mortality forecasting model which can fit well to historical data and 

gives a better forecast needs to be developed. In the USA life expectancy varies according to states, 

ethnicity, race and gender. Mortality forecasting is very essential both to the state and pension provider, 

annuity providers and insurance companies. The state uses these forecasted rates to plan health care 

programs and also in planning the social security of the nation. Forecasting rate of death is basically based 

on subjective judgments, or an expert opinion. However, reduction in mortality rates in recent decades 

have proven to be a challenge even to experts, and in this regard more methods use in classifying risk 

have been employed. Bailey and Simon introduced the minimum bias models, with the Generalized 

Linear Models; these provided a better statistical explanation for the minimum bias models which give 

way for selection of various parametric models. Feldblum and Brosius in there analysis later pave way 

for several bias functions, which include zero bias, least squares, minimum chi-squares and maximum 

likelihood. Thus, the purpose of this paper is to assess the viability of Negative Regression models in 

forecasting mortality 
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A. Statement problem 

Mortality forecasting remains a major challenge for many governments, pension institution 

and annuity managers. Therefore, there is need for a more accurate forecasting model 

which gives good fit to the historical mortality data for consistent predictive performance. A Negative 

Binomial Regression model is used to forecast male mortality of the United States of America. 

 

B. Objective of the study 

The main aim of this study is to use negative binomial regression model to forecast mortality rates using 

male mortality of USA (1980-2020). 

II. LITERATURE REVIEW 

 

The forecasting of uncertainty in mortality improvement is especially important to actuarial risk 

management. More specifically, longevity risk resembles investment risk in that it is non-diversifiable, 

since any change in the overall mortality level is likely to affect all policyholders of the same cohort. As 

a result, it cannot be mitigated by the traditional insurance mechanism of selling large number of policies. 

However, it is different in that there is a lack of mortality-linked securities that could possibly be used for 

hedging. In other words, capital is often required to cushion longevity risk, and such capital is, of course, 

determined by measures of uncertainty associated with mortality projections. Tuljarpurkar (1997) 

suggested that methods for forecasting uncertainty can be segregated into two categories, namely, static 

and dynamic. In a static approach, the forecaster makes assertions about demographic characteristics, 

such as life expectancy at birth, and the trajectories along which those characteristics will change between 

the start and end. These trajectories are then assigned a probability, usually determined subjectively. A 

shortcoming of the static approach is that the dynamics of getting from “here” to “there” are largely 

ignored. In contrast, dynamic forecasts employ a stochastic model that is fitted to historical data. The 

resulting models have uncertainty embedded within them, as reflected in historical change, and yield 

trajectories in the form of sample paths, which are particularly valuable in assessing financial liabilities 

that are sensitive to the timing and pattern of demographic change.  According to Polder et al., (2006) 

there are changing of death patterns hence there is need for research on causes of death and forecasts. 

This should be on understanding of health patterns, costs of social care and what drives overall mortality 

change. Li and Chan (2007) summed up the authentic period death rates to age 150 by the social model 

proposed by Himes et al. (1994). Given this grid of extrapolated passing rates, they got a Lee-Carter 



   RESEARCH ARTICLE 

Kabarak Journal of Research & Innovation 

www.kabarak.ac.ke 
 

 

 

 

 

                                                              
Link: http://ojs.kabarak.ac.ke/index.php/kjri/article/view/397                                                                                                                                                                                                                                                                                                   Vol 12 | Issue 1 | June 2022 38 

 

 

 

 

mortality projection from which accomplice life tables for various birth partners were figured. At long 

last, they inferred the dissemination capacity of omega for every accomplice utilizing traditional 

extraordinary esteem theory. Notwithstanding, the dissemination capacity of must be computed 

numerically as the extrapolation of death rates was performed in a non-parametric way. 

 

A. Life expectancy 

Life expectancy is the average number of complete years a person is expected to live a selected group or 

state. Studies conducted in the USA shows that women have a higher expectancy than men by about 5 

years while Hispanics have the highest life expectancy than non-Hispanics among the races. According 

to doctor Xu the author of the report, the reason as to why there is this variation in life expectancy among 

the sexes is majorly due to behavioral activities. Jiaquan Xu said "Men usually take more risks, and they 

participate in risky outdoor activities like climbing and scuba diving," he says. "Also, teenage boys do 

more high-risk activities, and they get in more car wrecks, than girls". 

 

B. Mortality rates 

Mortality rate is the probability that a life aged x at time t is expected to die in the next t+1 years. A study 

conducted in the year 2002 by Parikh, Guttenman, England and Pokorski found an approximately 1.2 

months per year improvement in life expectancy in the developed world and a global average of about 

4.5 months every year. Cousin-Frankel(2011) studied the cost implications of  these improvements in life 

expectancy and he found out that it cost the US social security administration about $50 billion annually. 

Insurance firms and define benefit pension plans uses mortality forecast in determining the amount of 

cash reserves to be held in order to meet future liabilities of the organization. According to Halonen 

(2007), increments amount needed to cushion pension inform of reserves in the US will lead to an increase 

in pension liability by about 5-10%. These findings shows that it is utmost important for the insurance, 

pension firms and the government to fully understand how mortality trends will flow in the future. For us 

to elucidate these mortality changes we must have a forecasting model which best captures these trends.  

III. METHODOLOGY 

A. Negative binomial regression model 

Negative binomial is a mixture of two distribution the Poisson and Gamma distribution and was first 

derived by Greenwood and Yule (1920) to adjust over-dispersion in discrete data. Poisson-Gamma 

function is a type of Poisson regression model in which the dependent variable 𝑦𝑖𝑗 is the number of times 
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death occurs. The number of death variable 𝑦𝑖𝑗is modeled as a Poisson variable with a mean ij where the 

model error is assumed to be Gamma distribution. According to Cameron and Travedi (1998), if Poisson 

mean assumed to have a random intercept term which enters the conditional mean in a multiplicative 

manner, then we get the following equations. 

                              𝑖𝑗= 𝑒𝑥𝑝(β0+∑ 𝑥𝑖𝑗𝛽𝑗
𝑘
𝑗=1 + 𝜀𝑖𝑗) 

                         𝑖𝑗 = 𝑒∑ 𝑥𝑖𝑗𝛽𝑗
𝑘
𝑗=1  𝑒(𝛽0+𝜀𝑖𝑗)  

                          𝑖𝑗= 𝑒(𝛽0 +∑ 𝑥𝑖𝑗
′𝑘

𝑗=1 𝛽𝑗)𝑒𝜀𝑖𝑗 

                         𝑖𝑗 = 𝜇𝑖𝑗𝑣𝑖𝑗 

Where, 𝑒(𝛽0+𝜀𝑖𝑗) is defined as the random intercept 𝜇𝑖𝑗=𝑒(𝛽0 +∑ 𝑥𝑖𝑗
′𝑘

𝑗=1 𝛽𝑗)
 is the log-link between the mean 

𝑖𝑗and the independent variables x’s, while 𝛽𝑠 are the regression coefficients which follows the lee-carter 

specification and 𝑣𝑖𝑗  is the error term. 

The marginal distribution of 𝑦𝑖𝑗 is obtained by integrating the error term 𝑣𝑖𝑗. 

f(𝑦𝑖𝑗; 𝜇𝑖𝑗)=∫ 𝑔(𝑦𝑖𝑗; 𝜇𝑖𝑗, 𝑣𝑖𝑗)
∞

0
ℎ(𝑣𝑖𝑗)𝑑𝑣𝑖𝑗       

Where, 

 ℎ(𝑣𝑖𝑗) is the mixing distribution.in this case 𝑔(𝑦𝑖𝑗; 𝜇𝑖𝑗 , 𝑣𝑖𝑗) is the Poisson distribution while the error 

term function ℎ(𝑣𝑖𝑗) is the gamma distribution. 

Letting 𝑣𝑖𝑗 be a two-parameter gamma distribution then its distribution will be given by; 

                 𝑧(𝑣𝑖𝑗; 𝛽, 𝛿)= 
𝛿𝛽

Г𝛽
𝑣𝑖𝑗

𝛽−1
𝑒−𝑣𝑖𝑗𝛿  ,     𝛽 > 0, 𝛿 > 0, 𝑣𝑖𝑗 > 0 

The mean of this distribution is; 

E[𝑣𝑖𝑗]=
𝛽

𝛿
⁄ , while it’s VAR[𝑣𝑖𝑗]=

𝛽
𝛿2⁄  .   

By setting  𝛽 = 𝛿 gives a one parameter gamma with  𝐸[𝑣𝑖𝑗] =1 and 1 𝛽⁄ .as the variance 

By substituting 𝑣𝑖𝑗 in the gamma distribution above it will be transforms to a function of Poisson mean 

given by; 

𝑧(𝑖𝑗; 𝛽, 𝜇𝑖𝑗)=
(

𝛽
𝑢𝑖𝑗

⁄ )
𝛽

Г𝛽
𝑖𝑗

𝛽−1
𝑒

−
𝑖𝑗

𝜇𝑖𝑗
𝛿
  

The joint distribution of  𝑦𝑖𝑗 and  u𝑖𝑗 is then given by 

𝑓(𝑦𝑖𝑗; 𝜇𝑖𝑗𝛽)=∫
𝑒𝑥𝑝(−𝑖𝑗)𝑖𝑗

 𝑦𝑖𝑗

𝑦𝑖𝑗!

∞

0
 
(

𝛽
𝑢𝑖𝑗

⁄ )
𝛽

Г𝛽
𝑖𝑗

𝛽−1
𝑒

−
𝑖𝑗

𝜇𝑖𝑗
𝛿

𝑑𝑖𝑗 

The unconditional distribution of death is thus obtained by summing out 𝑖𝑗 in the above function. 
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𝑓(𝑦𝑖𝑗; 𝜇𝑖𝑗𝛽) =
(

𝛽
𝑢𝑖𝑗

⁄ )
𝛽

Г𝛽Г(𝑦𝑖𝑗 + 1)
∫ 𝑒𝑥𝑝 (−𝑖𝑗 (1 +

𝛽

u𝑖𝑗
))

∞

0

𝑖𝑗

𝑦𝑖𝑗+𝛽−1
𝑑𝑖𝑗 

   𝑓(𝑦𝑖𝑗; 𝜇𝑖𝑗𝛽) =
(

𝛽
𝑢𝑖𝑗

⁄ )
𝛽

(1+
𝛽

u𝑖𝑗
)

−(𝑦𝑖𝑗+𝛽)

Г(𝑦𝑖𝑗+𝛽)

Г𝛽Г(𝑦𝑖𝑗+1)
 

   𝑓(𝑦𝑖𝑗; 𝜇𝑖𝑗𝛽) =
Г(𝑦𝑖𝑗+𝛽)

Г𝛽Г(𝑦𝑖𝑗+1)
(

𝛽

𝜇𝑖𝑗+𝛽
)

𝛽

(
u𝑖𝑗

u𝑖𝑗+𝛽
)

 𝑦𝑖𝑗

 

This is the probability density function of negative binomial distribution 

Where 𝑢𝑖𝑗> 0 is the mean incident rate of  𝑦𝑖𝑗 per unit of exposure. 

By setting the dispersion parameter 

𝛽 = 1
𝑘⁄  >0   

The distribution of death then becomes 

𝑓(𝑦𝑖𝑗) =
𝛤 (𝑦𝑖𝑗 +

1
𝑘

)

𝑦𝑖𝑗! 𝛤 (
1
𝑘

)
(

1

1 + 𝑘𝑢𝑖𝑗
)

1
𝑘

(
𝑘𝑢𝑖𝑗

1 + 𝑘𝑢𝑖𝑗
)𝑦𝑖𝑗 

 While the mean and variance of negative binomial regression model will be given by: 

𝐸[𝑦𝑖𝑗] = 𝑢𝑖𝑗and VAR[𝑦𝑖𝑗]= 𝑢𝑖𝑗(1 + κ𝑢𝑖𝑗) 

Thus if, 𝑦𝑖𝑗 ∼ negb(𝑢𝑖𝑗) then the log-link will be given by, 

 𝑢𝑖𝑗= exp {𝛽0+ (𝑥𝑖𝑗)T β}  

𝛽0 is the intercept  

Substituting 𝑢𝑖𝑗, the probability mass function of Negative binomial regression model will then be: 

𝑓(𝑦𝑖𝑗) =
𝛤 (𝑦𝑖𝑗 +

1
𝑘

)

𝑦𝑖𝑗! 𝛤 (
1
𝑘

)
(

1

1 + 𝑘(exp {𝛽0 + 𝑥𝑖𝑗
𝑡𝛽}

)

1
𝑘

(
𝑘(exp {𝛽0 + 𝑥𝑖𝑗

𝑡𝛽}

1 + 𝑘(exp {𝛽0 + 𝑥𝑖𝑗
𝑡𝛽}

)𝑦𝑖𝑗 

    

B. Estimating of parameters of negative binomial 

We estimate κ and β using the maximum likelihood method in order to fit negative binomial equation into 

US male mortality data. 

The likelihood function is given by; 

𝐿(𝑘, 𝛽)=∏
𝛤(𝑦𝑖𝑗+

1

𝑘
)

𝑦𝑖𝑗!𝛤(
1

𝑘
)

(
1

1+𝑘(exp {𝛽0+𝑥𝑖𝑗
𝑡𝛽}

)

1

𝑘
(

𝑘(exp {𝛽0+𝑥𝑖𝑗
𝑡𝛽}

1+𝑘(exp {𝛽0+𝑥𝑖𝑗
𝑡𝛽}

)𝑦𝑖𝑗
𝑖𝑗  
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But, 

                          ln (
𝛤(𝑦𝑖𝑗+

1

𝑘
)

𝛤(
1

𝑘
)

)=∑ ln (𝑧 +
1

𝑘
)

𝑦𝑖𝑗−1

𝑧=0  

The log-likelihood function then becomes 

𝐿 = ∑ { ∑ ln (𝑧 +
1

𝑘
) − ln (𝛤(𝑦𝑖𝑗 + 1)) − (𝑦𝑖𝑗 +

1

𝑘
) ln(1 + 𝑘𝜇𝑖𝑗) + 𝑦𝑖𝑗 ln(𝜇𝑖𝑗) + 𝑦𝑖𝑗 ln(𝑘)

𝑦𝑖𝑗−1

𝑧=1

}

𝑛

1

 

The coefficients of this model are then estimated by taking the first-order conditions and then equate them 

to zero. Cameron (1998) and lawless (1987) gave the following first-order conditions. 

𝜕𝐿

𝜕𝛽𝑗
= ∑

𝑥𝑖𝑗(𝑦𝑖𝑗−𝜇𝑖𝑗)

1+𝑘𝜇𝑖𝑗
= 0𝑛

𝑖=1       j=1,2,3….,k                                              

𝜕𝐿

𝜕𝑘
= ∑ {𝑘−2 (ln(1 + 𝑘𝜇𝑖𝑗) − ∑

1

𝑧+
1

𝑘

𝑦𝑖𝑗−1

𝑧=0 ) +
𝑦𝑖𝑗−𝜇𝑖𝑗

𝑘(1+𝑘𝜇𝑖𝑗)
}𝑛

𝑖=0 =0 

The series of equations can also be solved using Newton-Raphson method. 

To obtain the confidence interval of β we take Hessian matrix of the second derivatives of the log-

likelihood function. 

−𝜕2𝐿

𝜕𝛽𝑟𝜕𝛽𝑠
=∑

𝜇𝑖𝑗(1+𝑘𝑦𝑖𝑗)𝑥𝑖𝑟𝑥𝑖𝑠

(1+𝑘𝜇𝑖𝑗)
2

𝑛
𝑖=1   ,       r,s=1,2,3…..p 

−𝜕2𝐿

𝜕𝛽𝑟𝜕𝑘
=∑

𝜇𝑖𝑗(𝑦𝑖𝑗−𝜇𝑖𝑗)𝑥𝑖𝑟

(1+𝑘𝜇𝑖𝑗)
2

𝑛
𝑖=1   ,       r=1,2,3…..p 

−𝜕2𝐿

𝜕𝑘2
= ∑ { ∑ (

𝑧

1 + 𝑘𝑧
)

2

+ 2𝑘−3

𝑦𝑖𝑗−1

𝑧=0

ln(1 + 𝑘𝜇𝑖𝑗) −
2𝑘−2𝜇𝑖𝑗

1 + 𝑘𝜇𝑖𝑗
+

𝜇𝑖𝑗
2 (𝑦𝑖𝑗 +

1
𝑘

)

(1 + 𝑘𝜇𝑖𝑗)
2 }

𝑛

𝑖=1

 

Assuming that the covariance matrix is normally distribution, then the confidence interval of 𝛽 and 𝑘 is 

thus given by; 

[�̂�
𝑘

] ~N([
𝛽
𝑘

] , [
𝑉𝐴𝑅[𝛽] 0

0 𝑉𝐴𝑅[𝑘]
]), 

Where, 

VAR[𝛽]=(∑
𝜇𝑖𝑗

1+𝑘𝜇𝑖𝑗
𝑥𝑖𝑥𝑖́

𝑛
𝑖=1 )

−1

 

VAR[𝑘]=∑ {𝑘−4 (ln(1 + 𝑘𝜇𝑖𝑗) − ∑
1

𝑧+
1

𝑘

𝑦𝑖𝑗−1

𝑧=0 )

2

+
𝜇𝑖𝑗

𝑘2(1+𝑘𝜇𝑖𝑗)
}

−1

𝑛
𝑖=1  
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C. Description of data 

The study focus to establish male mortality rates in the United States using the datasets over a span of 27 

years from the 1980 to 2006. Validation set will be from 2008 to 2020 .This datasets will be classified 

according to sex, age, and time. One-year age group of 0-109 with an open interval for 110+ will be the 

population size starting from 1980 to 2020; the exposure to risk will be organized in the same manner.  

D. Observed males exposed to risk  

The study will use male to observe the mortality rate count from 1980 to 2007. These datasets will be 

grouped into 1x1 age-time interval with some changes that reflect the deaths during the year. 

E. Estimation of observed mortality rates 

We will estimate rate of mortality by taking ratio between death counts of male over their size of exposure 

from the year 1980 to 2020. These ratios will be present as log mortality as in the mortality tables. 

F. Sources of the data 

This study will source its data from the Human Mortality Database (maintained by the University of 

California, Berkeley (U.S.A) www.mortality.org. 

IV. RESULTS AND DISCUSSION  

Figure 1:  

 

Observed Male Deaths at Age 27 and Year 2006

 
The figure above shows that the observed count of male deaths in the USA. The highest deaths aged 27 

was recorded between year 1995 and 2000 while death observation in calendar year 2006, age group 80 

recorded the highest deaths. 
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Figure 2:  

 

Observed Male Exposure at Age 27 and Year 2006 

 
From these two-dimension plot of male exposure from 1980-2006, 1995 recorded the highest male 

exposure. It can be seen that the exposure rises at age 20 till age 40 then it steadily drops to zero at age 

100. 

A. Goodness of fit of the model 

In order to fit negative binomial model we fist check normality within the residual terms and the 

randomness of these elements. 

Figure 3:  

Goodness of Fit for Negative Binomial (Deviance of Log Number of Death) 
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Figure 4:  

 

Deviance Plots of Log Mortality at Age 27 and Year 2006 

 

The above two-dimension plots of deviance shows that the deviance reduced from year 1980 to 1994 

then it drastically drops to year 2006 while across age the deviance is random. 

 

Figure 5:   

 

Fitted Against Observed Number of Deaths 

 

From the above graphs it is clear that negative binomial does not capture well historical trends over time 

but the model fits well through age.  
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B.  Goodness of risk of exposure 

 

In this section we validate the risk of exposure by again checking the randomness of the deviance and 

also its normality. 

 

Figure 6:  

 

Goodness of Fit for Risk of Exposure 

 

The three-dimension plot above shows that the residual deviance is random. From the Q-Q plots, there is 

some variation at the beginning and at the end of the plot while most of the deviance is normal. 

 

Figure 7:  

 

Observed Against Fitted Risk of Exposure in Year 2006 and Age 27 
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These plots shows that there is lots of variation between fitted and observed risk of exposure over the 

tome but there is some fit in year 2006 through age. Thus, the model does not capture well the trends of 

risk of exposure for age group 27 in year 2006. 

 

Figure 8:  

Goodness of Forecast of Exposure with Negative Binomial 

 

From the above graphs we can see that forecasted risk of exposure depart from the historical trends over 

the years but it considerably fits with age. 

 

Figure 9:  

 

Goodness of Forecast of Mortality Rates 

 

The forecasted mortality throughout the years does not seem to model the historical mortality rate. Fitted 

mortality decreases linearly while observed mortality increases from year 2008 to 2011 then it gradually 

drops throughout the years. However, on close inspection, the curve shows that between the year 2016 
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and 2020 the model seems to be a perfect match. In the year 2020, the model fits well between age 0 and 

70 then it departs considerably. The model also gives a poor fit with lo-mortality after age 20. 

 

Conclusion(s) 

In the analysis, Negative Binomial gives low mean square error and a better fit with sample data compared 

with fitted data. The goodness of fit is also reflected in the forecasted data compared with observed data. 

Negative Binomial with simple polynomial functions gave better forecast over the given period. Thus, we 

recommend the use of simple polynomial function to model mortality in Negative Binomial   

Recommendation(s) 

From the above analysis it is evident that Negative Binomial with simple polynomial functions gave a 

better forecast over the given period. Thus, we recommend the use of simple polynomial function to 

model mortality. 
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